HW assignment, week 4

1. Field strength

Calculate the amplitudes of \vec{E} and \vec{B} at a distance of 50 cm away from an isotropic, monochromatic point source that radiates at a constant power level of 100 W.

2. Sellmeier equation

Hecht, problem 3.57:

Show that Cauchy's equation, $n = C_1 + C_2/\lambda_2 + C_3/\lambda^4 + \dots$, is an approximation of Sellmeier's equation,

$$n^2 = 1 + \sum_{j} \frac{A_j \lambda^2}{\lambda^2 - \lambda_{0,j}^2}$$

when $\lambda \gg \lambda_{0,j}$ (where $\lambda_{0,j}$ are the wavelengths associated with the relaxation frequencies $v_{0,j}$).

3. Rayleigh scattering

Hecht, problem 4.2:

Determine the relative amount of scattering of a dilute gas mixture for the $\lambda = 580$ nm and $\lambda = 400$ nm components of white light. Implications?

4. Damped driven oscillator

Hecht, problem 4.4:

In the equation for the damped driven oscillator, $m_e \ddot{x} + m_e \gamma \dot{x} + m_e \omega_0^2 x = q_e E(t)$, explain the significance of each term and show that the amplitude x_0 of a harmonic solution depends on the field amplitude, E_0 , as

$$x_{0} = \frac{q_{e}E_{0}}{m_{e}} \frac{1}{\left[\left(\omega_{0}^{2} - \omega^{2}\right) + \gamma^{2}\omega^{2}\right]^{1/2}}$$

How does the phase lag α depend on ω ?

5. Wave in thin glass plate

Hecht, problem 4.5:

Show that an observer sees the field of a light beam, $E_u = E_0 \exp(i\omega[t - y/c])$ in vacuum, change to $E_p = E_0 \exp(i\omega[t - (n-1)\Delta y/c - y/c])$ in an absorption-free glass plate of index *n* and thickness Δy . Start with the no. of oscillations of the wave field within Δy in vacuum and in the medium. Then show that for $n \approx 1$, or if Δy is very small, $E_p = E_u + \omega(n-1)\Delta y/c \cdot E_u \exp(-i\pi/2)$. This result shows that the secondary wave in a medium is phase-shifted by 90° ($\alpha = \pi/2$) against the primary wave, even as $\Delta y \rightarrow 0$.

(5 pts)

(2 pts)

(5 pts)

(5 pts)